sábado, 12 de julio de 2008

REGRESION LINEAL

En estadística la regresión lineal o ajuste lineal es un método matemático que modeliza la relación entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:




Etimología:
El término regresión se utilizó por primera vez en el estudio de
variables antropométricas: al comparar la estatura de padres e hijos, resultó que los hijos cuyos padres tenían una estatura muy superior al valor medio tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.[4] La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno.
El término lineal se emplea para distinguirlo del resto de técnicas de
regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágil y con un soporte teórico por parte de la matemática y la estadística mucho más extenso.


El modelo de regresión lineal
El modelo lineal relaciona la
variable dependiente Y con K variables explicativas Xk (k = 1,...K), o cualquier transformación de éstas, que generan un hiperplano de parámetros βk desconocidos:






donde es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y que por tanto se asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo de dos variables explicativas, el hiperplano es una recta:




ejemplo de regresion lineal:




















la ecuacion que representa a la regresion lineal se dara a conocer asi como las formulas para encontar algunos valores que intervienen en el mismo:





COMENTARIO:
La regresión lineales un método de análisis de los datos de la realidad de un fenomelo que sirve para poner en evidencia las relaciones que existen entre diversas variables de su taryectoria en el tiempo.

No hay comentarios: