La regresión cuadrática es el proceso por el cuál encontramos los parámetros de una parábola que mejor se ajusten a una serie de datos que poseemos, ya sean mediciones hechas o de otro tipo. Bueno, pero por que habríamos de querer ajustar nuestros datos precisamente a una parábola y no a otra función? (ver escogiendo la función de ajuste).
Una función cuadrática o de segundo grado se puede representar de manera genérica como :
Entonces lo que nos interesa es encontrar los valores de a, b y c que hacen que el valor de y calculado sea lo mas cercano posible al medido:
Deducción de las Ecuaciones:
De nuevo hacemos una definición de la función de error, y encontramos los valores de los parámetros que la minimizan, tomando derivadas parciales de la función por cada parámetro que haya:
De nuevo hacemos una definición de la función de error, y encontramos los valores de los parámetros que la minimizan, tomando derivadas parciales de la función por cada parámetro que haya:
Regresión Cuadrática : y = A + Bx +Cx2
COMENTARIO:
LA REGRESION CUADRATICA PRACTICMENTE SE USA CUANDO LOS DATOS ESTAN MUY DISPERSOS EN FORMA DE PARABOLA EN DICHA ECUACION DEL PROBLEMA SE UTILIZA FORMULAS PARA LLEGAR A PODER DETERMINAR EL RESULATO DEL FENOMENO QUE SE ESTE ESTUDIANDO.
No hay comentarios:
Publicar un comentario