En el estudio de la regularidad estadística con variables categóricas con más de dos variables o bien con variables numéricas con muchos valores (y se establecen clases o intervalos), la suma de las frecuencias relativas o proporciones siempre es uno (el 100%). Si arbitrariamente unimos varias categorías en una nueva clase, la frecuencia relativa o proporción para ella es la suma de las proporciones de las clases originales que se sumaron. Por ejemplo para las cuatro categorías de evolución de niños con neurodermatitis, se puede considerar la unión de las dos mejorías, y llamarla "alguna mejoría", entonces la frecuencia relativa de alguna mejoría es la suma de las de mejoría y mejoría marcada.
La distribución normal, también llamada distribución de Gauss o distribución gaussiana, es la distribución de probabilidad que con más frecuencia aparece en estadística y teoría de probabilidades. Esto se debe a dos razones fundamentalmente:
Su función de densidad es simétrica y con forma de campana, lo que favorece su aplicación como modelo a gran número de variables estadísticas.
Es, además, límite de otras distribuciones y aparece relacionada con multitud de resultados ligados a la teoría de las probabilidades gracias a sus propiedades matemáticas.
La función de densidad está dada por:
Distribución normal estándar. Estandarización [editar]
Cuando y , la distribución se conoce con el nombre de normal estándar.
Dada una variable aleatoria normal X, con media (también llamada Esperanza matemática) y desviación típica , si definimos otra variable aleatoria entonces la variable aleatoria Z tendrá una distribución de porcentaje altamente normal aunque algunas veces muy estándar y a la vez pequeña y . Se dice que se ha tipificado o estandarizado la variable X.
Uso de tablas [editar]
La probabilidad de que una variable aleatoria (que sigue una distribución normal) se encuentre entre dos valores determinados será en general difícil de calcular (hay que usar la integral de la función de probabilidad). Para ello, existen tablas de distribución normal tipificada, si bien éstas se calculan para la distribución Normal Tipificada.
Básicamente, se busca un valor de x (por ejemplo, ), y la tabla nos da la probabilidad de que :
En el caso de que la distribución no sea estándar, por ejemplo, con y , tendremos que tipificar la variable:
Se obtiene una variable Z normal, que además está tipificada. Si ahora se consulta en la tabla,
COMENTARIO.
EL AREA BAJO LA CURVA ES UNA GRAFICA QUE REPRESENTA UNA DISTRIBUCION DE DATOS, EN EL QUE SE ESTUDIA UN PROBLEMA O FENOMENO Y CON EL CUAL SE DETERMINA LA PROBABILIDAD, EL PORCENTAJE Y EL NUMERO DE DATOS QUE SE DESEA SABER O DESCIFRAR, UN RESULTADO ADECUADO O ESPECIFICO SOBRE EL FENOMENO QUE SE ESTE ESTUDIANDO.
sábado, 10 de mayo de 2008
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario